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Absrracr: A stereochemicaIly unambiguous synrhesis of (+)-asperlin from L-rhamnose establishes the 

conjigurarion of the antibiotic 4s 4s. 5s. 6s. 7R. 

Asperlin (I 1. a crystalline metabolite from Aspergillus nidufuns, has been shown to exhibit antitumor and 

antibacterial activity. The gross srructure of 1 was assigned by Argoudelis in 1966,’ and early synthetic 

studies by Perlin demonstrated that the C-4 and C-5 substituents of the lactone ring had the L-three 

configuration. Pcrlin also proved the mans stereochemistry of the epoxypropyl sidechain.’ However the 

absolute stereochemistry of the sidechain of this deceptively simple molecule has eluded a deftitive 

assignment. Thus. NMR studies” were used to propose the absolute stereochemistry of the sidechain 

cpoxidc as 6R,7S, an assignment that contradicted the X-ray analysis which assigned the 6S,7R 

configuration. ” Rabanal” and, very recently, Shing” have synthesized unnatural diastereomers of asperlin 

and deduced the absolute stereochemistry by exclusion. In fact, there has been only one synthesis of 

(+)-asperlin reported in the literature’; and the method used to prepare the epoxide did not establish its 

absolute configuration. In this communication, we wish to report an enantiospecific synthesis of 1 which 

furnishes incontrovertible evidence for its absolute stereochemistry as 4s. 5s. 6S, 7R. We chose to use 

a sugar precursor that had the requisite stereochemistry at the future C-Q and C-6, that combined with 

unambiguous chemical transformations, leaves no doubt about C-S and C-7. As illustrated in the 

retrosynthcsis scheme 1. we envisioned the epoxide as arising from 2 and an irmamolecuLar Homer- 

Wadsworth-EmTons reaction producing the lactone. The appropriate precursor for 3 was L-rhamnose, since 

it is readily available and needs an inversion only at C-3. 
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L-Rhamnose was converted to methyl rhamnoside using Binkley’s procedure: The manuever that left the 

C-3 OH free and blocked the C-2 and C-4 OH’s was performed as follows. The C-2 and C-3 OH’s were 

protected as an orthoacetate and the C-4 OH was silylated with TBDMSOTf to afford 6 (Scheme 2). 

The crude silyl ether-otthoacetate was hydrolyzed with 90% aqueous CH,COOH, following well-established 

precedents for the regioselective ring opening of axial-equatorial orthoesters.’ We thus obtained 7 in 52% 

overall yield from methyl rhamnoside. With the C-3 OH unblocked, its inversion was the next problem to 

be solved. Although Mitsunobu conditions were unsuccessful in our hands, the transformation was 

accomplished cleanly in two steps: PCC-MS oxidation’ of the alcohol 7 gave the ketone 8 which was 

stereoselectively reduced to the axial alcohol 9 in 94% overall yield.s The alcohol was esterified to give 

the phosphonate IO in 95% yield.‘O Conventional methods (e.g. aqueous acid) when employed to hydrolyze 

the methyl glycoside led to deblocking of TBDMS and/or phosphonate groups. The hydrolysis was 

efficiently done in two steps:(i) the methyl glycoside was converted to the 1-chloro sugar 11 by reacting 

it with BCl, in CH,CI, at -78°C and (ii) the I-chloro sugar was reacted with Ag,CO, in aqueous acetone 

to give 3 in 73% overall yield. The stage was set for the intramolecular HWE reaction. Several bases and 

reaction conditions were tried’* but NaH/THF at room temperature gave satisfactory results to produce the 

lactone I2 in 32% yield. The lactone was converted to (+)-asperlin as follows: the remaining free OH 

was converted to its mesylate; then reaction of the mesylate with n-Bu,NF.3H,O in CH,CI, at room 

temperature” produced asperlin in 22% yield”. This material was identical to a sample of the natural 

product in all respects.” Synthetic (+)-Asperlin: mp = 68-70”. [a],25”=+322” (c= 0.2, 95% EtOH); litmp 

71-73”, [a],25”=+345 (c= 0.9, 95% EtOH)‘; ‘H NMR (CDCI,, 300MHz) 6 7.11 (dd, lH, J= 5.78, 9.77, H3), 

6.26 (d, IH, J= 9.74, IIZ), 5.35 (dd, 1H. J= 5.73, 2.82, HJ). 4.14 (dd, IH,J= 6.95, 2.81, 115), 3.14-3.09 

(m, 2H. H6, H7), 2.18 (s, 3H,OAc), 1.43 (d, 3H, J= 5.04. CH,); 13C NMR (CDCl,. 75MHz) 6 169.8 

(COCH,); 161.5 (Cl) ; 140.5 (C3); 124.9 (CZ); 78.9 (CJ); 62.1 (CS); 54.9 (C6); 54.6 (C7); 20.6 (CH,CO); 

17.0 (CIJ).Thus, we have achieved a total synthesis of (+)-asperlin which unambigously establishes the 

absolute stereochemistry of the epoxide as drawn in 1. 
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